LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multifunctionalities of an Azine-Linked Covalent Organic Framework: From Nanoelectronics to Nitroexplosive Detection and Conductance Switching

Photo by jjying from unsplash

By using the state-of-the-art theoretical method, we have investigated the electronic structures of recently synthesized two-dimensional azine-linked covalent organic framework (ACOF-1). Our result indicates that ACOF-1 is a direct band… Click to show full abstract

By using the state-of-the-art theoretical method, we have investigated the electronic structures of recently synthesized two-dimensional azine-linked covalent organic framework (ACOF-1). Our result indicates that ACOF-1 is a direct band gap semiconductor, suggesting useful application in nanoelectronics. Its one-dimensional (1D) structure also exhibits semiconducting properties. Furthermore, this azine-linked COF is found to be practically useful for selective sensing of nitroaromatics over nitroaliphatics. Lastly, our calculations reveal a more realizable way for using two tautomers of ATFG-COF, a derivative of ACOF-1, in conductance switching device by means of transport property calculation. Therefore, our present study may provide a guideline for multifunctionalities of azine-linked COF (ACOF-1).

Keywords: azine linked; multifunctionalities azine; linked covalent; conductance switching; covalent organic; organic framework

Journal Title: Journal of Physical Chemistry C
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.