Porous two-dimensional monolayers have gained interest both in theoretical and experimental research because of their controlled pore size and evenly distributed holes within the basal plane. Herein, we have investigated… Click to show full abstract
Porous two-dimensional monolayers have gained interest both in theoretical and experimental research because of their controlled pore size and evenly distributed holes within the basal plane. Herein, we have investigated the efficient trapping of three pollutants (HF, HCN, and H2S) on the recently synthesized porous two-dimensional nitrogeneted holey carbon (C2N-h2D) monolayer using periodic density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. The differential binding positions/orientations of HF, HCN, and H2S in the cavity of C2N depend on their adsorption energy and charge transfer efficiency. H2S serves as a charge donor while HF and HCN act as charge acceptors. Our AIMD simulations demonstrate that the C2N monolayer is thermally stable at room temperature. Adsorption occurs through physisorption, and no chemical bond is formed between the molecule and the C2N surface irrespective of the site of interaction. Electrostatic interactions and hydrogen bonding facilitate stro...
               
Click one of the above tabs to view related content.