Mechanical forces can lead to qualitative changes in reaction mechanism, which depend on the specific mode of force induction and inherent chemistries of the mechanophore. To demonstrate these effects at… Click to show full abstract
Mechanical forces can lead to qualitative changes in reaction mechanism, which depend on the specific mode of force induction and inherent chemistries of the mechanophore. To demonstrate these effects at an atomistic level, three challenging mechanochemical transformations of recent interest are herein studied: spiropyran ring opening, flex-activated small molecule release, and cyclopropane ring opening. These examples show that mechanical load can eliminate intermediates and transition states along a reaction path, preactivate reactions where the force is not parallel to the reaction path, and modulate force conveyance to the mechanophore in a polymer-dependent fashion. Two different merocyanin products were identified—cis and trans isomers—from the spiropyran ring-opening reaction, and tuning the magnitude of the force allows for selection of one over the other. The reaction involving oxanorbornadiene where bonds perpendicular to the force are flexed through angular distortions has the interesting prope...
               
Click one of the above tabs to view related content.