LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Determination of the Ni–Ni Bonding Strength in Metal-String Complexes Using Head-to-Head Nanorods and Electrochemical Surface-Enhanced Raman Spectroscopy

Photo from wikipedia

We report the bonding strength of nickel ions in trinickel extended metal atom chains (EMACs) and dinickel complexes using Raman, surface-enhanced Raman scattering (SERS), and electrochemical SERS (ECSERS). By using… Click to show full abstract

We report the bonding strength of nickel ions in trinickel extended metal atom chains (EMACs) and dinickel complexes using Raman, surface-enhanced Raman scattering (SERS), and electrochemical SERS (ECSERS). By using the redox ability of gold and silver nanoparticles during plasmonic excitation, the bonding strength and the valence state of metal ions can be determined. For dinickel complexes, we assign the Raman band at 322 cm–1 to Ni2+–Ni3+ stretch in [Ni2(TPG)4]BF4 (TPG = N,N′,N″-triphenylguanidinate, [Ni2]5+) and 327 cm–1 for Ni2+–Ni1+ stretch of [Ni2]3+ moieties in Ni5(camnpda)4. For trinickel EMACs, no band is assigned to Ni3 symmetric stretch νNi3 sym in the neutral form Ni3(dpa)4X2 (dpa = dipyridyl amido and X = NCS, Cl). In the reduced form, the ECSERS curves show the band at 242 cm–1, which also appeared at gold nanoparticle SERS measurement, assigned to νNi3 sym for [Ni3]5+ core. The trinickel complexes were reduced by gold nanosphere, and this νNi3 sym band is further enhanced with SERS measure...

Keywords: head; bonding strength; metal; complexes using; spectroscopy

Journal Title: Journal of Physical Chemistry C
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.