LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing the Optical Absorption and Interfacial Properties of BiVO4 with Ag3PO4 Nanoparticles for Efficient Water Splitting

Photo from wikipedia

Photoelectrochemical water splitting using semiconductor materials has emerged as a promising approach to produce hydrogen (H2) from renewable resources such as sunlight and water. In the present study, Ag3PO4 nanoparticles… Click to show full abstract

Photoelectrochemical water splitting using semiconductor materials has emerged as a promising approach to produce hydrogen (H2) from renewable resources such as sunlight and water. In the present study, Ag3PO4 nanoparticles were electrodeposited on BiVO4 photoanodes for water splitting. A remarkable water oxidation photocurrent of 2.3 mA·cm–2 at 1.23 V versus reversible hydrogen electrode with ∼100% Faradaic efficiency was obtained, which constitutes a notable increase compared to the pristine BiVO4 photoanode. It is demonstrated that the enhancement of optical absorption (above-band gap absorbance) and the decrease of surface losses after the optimized deposition of Ag/Ag3PO4 nanoparticles are responsible for this notable performance. Remarkably, this heterostructure shows promising stability, demonstrating 25% decrease of photocurrent after 24 h continuous operation. This approach may open new avenues for technologically exploitable water oxidation photoanodes based on metal oxides.

Keywords: optical absorption; water splitting; enhancing optical; water; ag3po4 nanoparticles

Journal Title: Journal of Physical Chemistry C
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.