LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Grain Boundary Engineering of Halide Perovskite CH3NH3PbI3 Solar Cells with Photochemically Active Additives

Photo by kellysikkema from unsplash

In this study, we investigate the nanoscale effects of photochemically active additives of benzoquinone (BQ), hydroquinone (HQ), and tetracyanoquinodimethane (TCNQ) on grain boundaries in CH3NH3PbI3 solar cells. We employ scanning… Click to show full abstract

In this study, we investigate the nanoscale effects of photochemically active additives of benzoquinone (BQ), hydroquinone (HQ), and tetracyanoquinodimethane (TCNQ) on grain boundaries in CH3NH3PbI3 solar cells. We employ scanning probe microscopy under light illumination, in particular Kelvin probe force microscopy, to study surface potential changes under laser light illumination. The recently found improvement in the efficiency of BQ added solar cells can be clearly seen in vanishing contact potential differences at grain boundaries under illumination, rendering the material more uniform under solar cell operating conditions. These effects are observed for BQ, but not for HQ and TCNQ. Our findings shed light onto halide perovskite materials and the functional additive design for improved solar cell performance.

Keywords: active additives; halide perovskite; microscopy; ch3nh3pbi3 solar; photochemically active; solar cells

Journal Title: Journal of Physical Chemistry C
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.