LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of LiFSI Concentrations To Form Thickness- and Modulus-Controlled SEI Layers on Lithium Metal Anodes

Photo from wikipedia

Improving the cyclic stability of lithium metal anodes is of particular importance for developing high-energy-density batteries. In this work, a remarkable finding shows that the control of lithium bis(fluorosulfonyl)imide (LiFSI)… Click to show full abstract

Improving the cyclic stability of lithium metal anodes is of particular importance for developing high-energy-density batteries. In this work, a remarkable finding shows that the control of lithium bis(fluorosulfonyl)imide (LiFSI) concentrations in electrolytes significantly alters the thickness and modulus of the related SEI layers, leading to varied cycling performances of Li metal anodes. In an electrolyte containing 2 M LiFSI, an SEI layer of ∼70 nm that is obviously thicker than those obtained in other concentrations is observed through in situ atomic force microscopy (AFM). In addition to the decomposition of FSI– anions that generates rigid lithium fluoride (LiF) as an SEI component, the modulus of this thick SEI layer with a high LiF content could be significantly strengthened to 10.7 GPa. Such a huge variation in SEI modulus, much higher than the threshold value of Li dendrite penetration, provides excellent performances of Li metal anodes with Coulombic efficiency higher than 99%. Our approach d...

Keywords: metal; lithium metal; metal anodes; thickness modulus; lifsi concentrations; sei layers

Journal Title: Journal of Physical Chemistry C
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.