LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Density Functional Theory Modeling of Solid-State Nuclear Magnetic Resonances for Polycyclic Aromatic Hydrocarbons

Photo by kellysikkema from unsplash

Experimental solid-state nuclear magnetic resonance (SS-NMR) has been used to analyze different theoretical models for polycyclic aromatic hydrocarbon crystals of similar structure (naphthalene, anthracene, phenanthrene, picene, and triphenylene). We compare… Click to show full abstract

Experimental solid-state nuclear magnetic resonance (SS-NMR) has been used to analyze different theoretical models for polycyclic aromatic hydrocarbon crystals of similar structure (naphthalene, anthracene, phenanthrene, picene, and triphenylene). We compare the accuracy of four modeling approaches to compute SS-NMR chemical shifts using ab initio density functional theory (DFT). Models based on X-ray cell parameters, on optimization of the cell with the Perdew, Burke, and Ernzerhof (PBE) approximation, and on two methods adding dispersion forces were compared (using Pearson’s and mean absolute deviation correlation factors). Even though the intermolecular distances and cell volumes are different depending on the model, there is an overall good agreement between theoretical and experimental 13C chemical shifts for all of them. An analysis of intermolecular distances and deviation from planarity in different models and their influence on theoretical chemical shieldings is also performed.

Keywords: solid state; density functional; nuclear magnetic; functional theory; state nuclear; polycyclic aromatic

Journal Title: Journal of Physical Chemistry C
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.