The recent successes of the Materials Genome Initiative have opened up new opportunities for data-centric informatics approaches in several subfields of materials research, including in polymer science and engineering. Polymers,… Click to show full abstract
The recent successes of the Materials Genome Initiative have opened up new opportunities for data-centric informatics approaches in several subfields of materials research, including in polymer science and engineering. Polymers, being inexpensive and possessing a broad range of tunable properties, are widespread in many technological applications. The vast chemical and morphological complexity of polymers though gives rise to challenges in the rational discovery of new materials for specific applications. The nascent field of polymer informatics seeks to provide tools and pathways for accelerated property prediction (and materials design) via surrogate machine learning models built on reliable past data. We have carefully accumulated a data set of organic polymers whose properties were obtained either computationally (bandgap, dielectric constant, refractive index, and atomization energy) or experimentally (glass transition temperature, solubility parameter, and density). A fingerprinting scheme that capt...
               
Click one of the above tabs to view related content.