Energy transfer at the gas–molten Au interface is investigated in quantum-state-resolved molecular beam experiments of supersonically cooled NO scattered from liquid Au (TS = 1400(40) K) and detected via laser-induced… Click to show full abstract
Energy transfer at the gas–molten Au interface is investigated in quantum-state-resolved molecular beam experiments of supersonically cooled NO scattered from liquid Au (TS = 1400(40) K) and detected via laser-induced fluorescence. Inelastic dynamics at the gas–Au(liq) interface is evidenced through collisional excitation of both (i) nonadiabatic electronic/spin–orbit and (ii) rovibrational degrees of freedom of NO at near thermal (2.0(7) kcal/mol) and hyperthermal (20(2) kcal/mol) collision energies. The studies represent first molecular beam scattering experiments from molten Au, as well as the first observations of vibrational excitation by scattering at the gas–liquid metal interface. In the vibrationally elastic NO(v = 0 ← 0) channel, spin–orbit and rotational excitation are found to increase significantly with collision energy. However, excitation in these degrees of freedom are largely energy-independent for the vibrationally inelastic (v = 1 ← 0) channel. One simple physical interpretation of thes...
               
Click one of the above tabs to view related content.