LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gold Nanoearbuds: Seed-Mediated Synthesis and theEmergence of Three Plasmonic Peaks

Photo by drew_hays from unsplash

We demonstrate the first successful synthesis of reasonably monodisperse and single-crystalline gold nanoearbuds (Au NEBs) using a binary surfactant mixture of cetyltrimethylammonium chloride (CTAC) and benzyldimethylhexadecylammonium chloride (BDAC) in seed-mediated… Click to show full abstract

We demonstrate the first successful synthesis of reasonably monodisperse and single-crystalline gold nanoearbuds (Au NEBs) using a binary surfactant mixture of cetyltrimethylammonium chloride (CTAC) and benzyldimethylhexadecylammonium chloride (BDAC) in seed-mediated growth method. We have focused on the key chemical parameters behind the formation and growth of Au NEBs to result in tunable dimensions (length, 37–77 nm; width, 4–6 nm; aspect ratio, 7–19), as a consequence of which the longitudinal surface plasmon resonance (LSPR) peak could be tuned beyond 1200 nm. The achievement of LSPR beyond 1200 nm while maintaining the dimension well below 100 nm is a challenging accomplishment in the realm of one-dimensional (1D) Au nanostructures. This earbud-like morphology additionally exhibits three plasmonic peaks, rather uncommon for 1D nanostructures, which were analyzed theoretically based on the finite element method. The new resonance peak of the Au NEB was assigned as an additional longitudinal mode intensified by the bulbous ends as well as the high aspect ratio, thereby providing conclusive evidence that it is indeed a new morphology.

Keywords: seed; synthesis; plasmonic peaks; three plasmonic; gold nanoearbuds; seed mediated

Journal Title: Journal of Physical Chemistry Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.