LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved discrimination of asymmetric and symmetric arginine dimethylation by optimization of the normalized collision energy in LC-MS proteomics.

Photo by mbrunacr from unsplash

Protein arginine methylation regulates diverse biological processes including signaling, metabolism, splicing, and transcription. Despite its important biological roles, arginine dimethylation remains an understudied post-translational modification. Partly, this is because the… Click to show full abstract

Protein arginine methylation regulates diverse biological processes including signaling, metabolism, splicing, and transcription. Despite its important biological roles, arginine dimethylation remains an understudied post-translational modification. Partly, this is because the two forms of arginine dimethylation, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), are isobaric and therefore indistinguishable by traditional mass spectrometry techniques. Thus, there exists a need for methods that can differentiate these two modifications. Recently, it has been shown that the ADMA and SDMA can be distin-guished by the characteristic neutral loss (NL) of dimethylamine and methylamine, respectively. However, the utility of this meth-od is limited because the vast majority of dimethylarginine peptides do not generate measurable NL ions. Here, we report that increasing the normalized collision energy (NCE) in a higher-energy collisional dissociation (HCD) cell increases the generation of the characteristic NL that distinguish ADMA and SDMA. By analyzing both synthetic and endogenous methyl-peptides, we iden-tify an optimal NCE value that maximizes NL generation and simultaneously improves methyl-peptide identification. Using two orthogonal methyl peptide enrichment strategies, high pH strong cation exchange (SCX) and immunoaffinity purification (IAP), we demonstrate that the optimal NCE increases improves NL-based ADMA and SDMA annotation and dimethyl peptide identi-fications by 125% and 17%, respectively, compared to the standard NCE. This simple parameter change will greatly facilitate the identification and annotation of ADMA and SDMA in mass spectrometry-based methyl-proteomics to improve our understanding of how these modifications differentially regulate protein function. All raw data has been deposited in the PRIDE database with accession number PXD017193.

Keywords: arginine dimethylation; dimethylation; collision energy; normalized collision; adma sdma

Journal Title: Journal of proteome research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.