LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling Lower-Order Statistics to Enable Decoy-Free FDR Estimation in Proteomics.

Photo from wikipedia

One of the chief objectives in mass spectrometry-based peptide identification in proteomics is the statistical validation of top-scoring peptide-spectrum matches (PSMs) in the form of false discovery rate (FDR) estimation.… Click to show full abstract

One of the chief objectives in mass spectrometry-based peptide identification in proteomics is the statistical validation of top-scoring peptide-spectrum matches (PSMs) in the form of false discovery rate (FDR) estimation. Existing methods construct a null model that captures the characteristics of incorrect target PSMs to estimate the FDR, most often with the help of decoys. Decoy-based methods, however, increase the computational cost and rely on the difficult-to-verify assumption that decoy PSMs constitute a sufficient and representative sample of the population of possible incorrect target PSMs. On the other hand, the possibility of FDR estimation assisted by the plentiful non-top-scoring PSMs, which are almost always incorrect, has been scarcely explored. In this work, we propose a novel decoy-free procedure for developing null models for top-scoring PSMs using the transformed e-value (TEV) score and the distributions of non-top-scoring target PSMs. The method relies on a theoretically derivable relationship between the parameters of the distributions of lower-order statistics of the TEV score and a necessary empirical optimization to fit a single parameter to actual data. The framework was tested on multiple different data sets and two search engines. We present evidence that our method is comparable to and occasionally outperforms popular decoy-free and decoy-based methods in FDR estimation.

Keywords: fdr estimation; lower order; top scoring; estimation; decoy free

Journal Title: Journal of proteome research
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.