LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MSstats Version 4.0: Statistical Analyses of Quantitative Mass Spectrometry-Based Proteomic Experiments with Chromatography-Based Quantification at Scale.

Photo by shalone86 from unsplash

The MSstats R-Bioconductor family of packages is widely used for statistical analyses of quantitative bottom-up mass spectrometry-based proteomic experiments to detect differentially abundant proteins. It is applicable to a variety… Click to show full abstract

The MSstats R-Bioconductor family of packages is widely used for statistical analyses of quantitative bottom-up mass spectrometry-based proteomic experiments to detect differentially abundant proteins. It is applicable to a variety of experimental designs and data acquisition strategies and is compatible with many data processing tools used to identify and quantify spectral features. In the face of ever-increasing complexities of experiments and data processing strategies, the core package of the family, with the same name MSstats, has undergone a series of substantial updates. Its new version MSstats v4.0 improves the usability, versatility, and accuracy of statistical methodology, and the usage of computational resources. New converters integrate the output of upstream processing tools directly with MSstats, requiring less manual work by the user. The package's statistical models have been updated to a more robust workflow. Finally, MSstats' code has been substantially refactored to improve memory use and computation speed. Here we detail these updates, highlighting methodological differences between the new and old versions. An empirical comparison of MSstats v4.0 to its previous implementations, as well as to the packages MSqRob and DEqMS, on controlled mixtures and biological experiments demonstrated a stronger performance and better usability of MSstats v4.0 as compared to existing methods.

Keywords: mass spectrometry; based proteomic; statistical analyses; proteomic experiments; spectrometry based; analyses quantitative

Journal Title: Journal of proteome research
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.