LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CiRCus: A Framework to Enable Classification of Complex High-Throughput Experiments.

Photo from wikipedia

Despite the increasing use of high-throughput experiments in molecular biology, methods for evaluating and classifying the acquired results have not kept pace, requiring significant manual efforts to do so. Here,… Click to show full abstract

Despite the increasing use of high-throughput experiments in molecular biology, methods for evaluating and classifying the acquired results have not kept pace, requiring significant manual efforts to do so. Here, we present CiRCus, a framework to generate custom machine learning models to classify results from high-throughput proteomics binding experiments. We show the experimental procedure that guided us to the layout of this framework as well as the usage of the framework on an example data set consisting of 557 166 protein/drug binding curves achieving an AUC of 0.9987. By applying our classifier to the data, only 6% of the data might require manual investigation. CiRCus bundles two applications, a minimal interface to label a training data set (CindeR) and an interface for the generation of random forest classifiers with optional optimization of pretrained models (CurveClassification). CiRCus is available on https://github.com/kusterlab accompanied by an in-depth user manual and video tutorial.

Keywords: framework; circus framework; throughput experiments; high throughput

Journal Title: Journal of proteome research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.