LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-Reference Spectral Library Yields Almost Complete Coverage of Heterogeneous LC-MS/MS Data Sets.

Photo from wikipedia

Spectral libraries play a central role in the analysis of data-independent-acquisition (DIA) proteomics experiments. A main assumption in current spectral library tools is that a single characteristic intensity pattern (CIP)… Click to show full abstract

Spectral libraries play a central role in the analysis of data-independent-acquisition (DIA) proteomics experiments. A main assumption in current spectral library tools is that a single characteristic intensity pattern (CIP) suffices to describe the fragmentation of a peptide in a particular charge state (peptide charge pair). However, we find that this is often not the case. We carry out a systematic evaluation of spectral variability over public repositories and in-house data sets. We show that spectral variability is widespread and partly occurs under fixed experimental conditions. Using clustering of preprocessed spectra, we derive a limited number of multiple characteristic intensity patterns (MCIPs) for each peptide charge pair, which allow almost complete coverage of our heterogeneous data set without affecting the false discovery rate. We show that a MCIP library derived from public repositories performs in most cases similar to a "custom-made" spectral library, which has been acquired under identical experimental conditions as the query spectra. We apply the MCIP approach to a DIA data set and observe a significant increase in peptide recognition. We propose the MCIP approach as an easy-to-implement addition to current spectral library search engines and as a new way to utilize the data stored in spectral repositories.

Keywords: data sets; library; almost complete; coverage heterogeneous; complete coverage; spectral library

Journal Title: Journal of proteome research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.