LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mass Spectrometry-Based Quantification of Tau in Human Cerebrospinal Fluid Using a Complementary Tryptic Peptide Standard.

Photo from wikipedia

Here, we report a method for the generation of complementary tryptic (CompTryp) isotope-labeled peptide standards for the relative and absolute quantification of proteins by mass spectrometry (MS). These standards can… Click to show full abstract

Here, we report a method for the generation of complementary tryptic (CompTryp) isotope-labeled peptide standards for the relative and absolute quantification of proteins by mass spectrometry (MS). These standards can be digested in parallel with either trypsin (Tryp-C) or trypsin-N (Tryp-N), to generate peptides that significantly overlap in primary sequence having C- and N-terminal arginine and lysine residues, respectively. As a proof of concept, an isotope-labeled CompTryp standard was synthesized for Tau, a well-established biomarker in Alzheimer's disease (AD), which included both N- and C-terminal heavy isotope-labeled (15N and 13C) arginine residues and flanking amino acid sequences to monitor proteolytic digestion. Despite having the exact same mass, the N- and C-terminal heavy Tau peptides are distinguishable by retention time and MS/MS fragmentation profiles. The isotope-labeled Tau CompTryp standard was added to human cerebrospinal fluid (CSF) followed by parallel digestion with Tryp-N and Tryp-C. The native and isotope-labeled peptide pairs were quantified by parallel reaction monitoring (PRM) in a single assay. Notably, both tryptic peptides were effective at quantifying Tau in human CSF, and both showed a significant difference in CSF Tau levels between AD and controls. Treating these CompTryp Tau peptide measurements as independent replicates also improved the coefficient of variation and correlation with Tau immunoassays. More broadly, we propose that CompTryp standards can be generated for any protein of interest, providing an efficient method to improve the robustness and reproducibility for MS analysis of clinical and research samples.

Keywords: human cerebrospinal; tau; mass spectrometry; isotope labeled; complementary tryptic; cerebrospinal fluid

Journal Title: Journal of proteome research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.