LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detection of Ovarian Cancer Using Samples Sourced from the Vaginal Microenvironment.

Photo from wikipedia

Mass spectrometry (MS) offers high levels of specificity and sensitivity in clinical applications, and we have previously been able to demonstrate that matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS is capable… Click to show full abstract

Mass spectrometry (MS) offers high levels of specificity and sensitivity in clinical applications, and we have previously been able to demonstrate that matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS is capable of distinguishing two-component biological mixtures at low limits of detection. Ovarian cancer is notoriously difficult to detect due to the lack of any screening methods for early detection. By sampling a local microenvironment, such as the vaginal fluids, a MS based method is presented that was capable of monitoring disease progression from vaginally collected, local samples from tumor bearing mice. A murine xenograft model of high grade serous ovarian carcinoma (HGSOC) was used for this study and vaginal lavages were obtained from mice on a weekly basis throughout disease progression and subjected to our MALDI-TOF MS workflow followed by statistical analyses. Proteins in the 4-20 kDa region of the mass spectrum could consistently be measured to yield a fingerprint that correlated with disease progression over time. These fingerprints were found to be statistically stable across all mice with the protein fingerprint converging towards the end point of the study. MALDI-TOF MS serves as a unique analytical technique for measuring a sampled vaginal microenvironment in a specific and sensitive manner for the detection of HGSOC in a murine model.

Keywords: microenvironment; detection; detection ovarian; vaginal microenvironment; ovarian cancer

Journal Title: Journal of proteome research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.