LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of Free Fatty Acids on Lipid Membrane–Nisin Interaction

Photo from wikipedia

The influence of free fatty acids (FFAs) on the nisin–membrane interaction was investigated through micro-DSC and fluorescence spectroscopy. A simple but informative model membrane was prepared (5.7 DMPC:3.8 DPPS:0.5 DOPC… Click to show full abstract

The influence of free fatty acids (FFAs) on the nisin–membrane interaction was investigated through micro-DSC and fluorescence spectroscopy. A simple but informative model membrane was prepared (5.7 DMPC:3.8 DPPS:0.5 DOPC molar ratio) by considering the presence of different phospholipid headgroups in charge and size and different phospholipid tails in length and unsaturation level, allowing the discrimination of the combined interaction of nisin and FFAs with the single phospholipid constituents. The effects of six FFAs on membrane stability were evaluated, namely two saturated FFAs (palmitic acid and stearic acid), two monounsaturated FFAs (cis-unsaturated oleic acid and trans-unsaturated elaidic acid) and two cis-polyunsaturated FFAs (ω-6 linoleic acid and ω-3 docosahexaenoic acid). The results permitted assessment of a thermodynamic picture of such interactions which indicates that the peptide–membrane interaction does not overlook the presence of FFAs within the lipid bilayer since both FFAs and nisin are able to selectively promote thermodynamic phase separations as well as a general lipid reorganization within the host membrane. Furthermore, the magnitude of the effects may be different depending on the FFA chemical structure as well as the membrane lipid composition.

Keywords: nisin; fatty acids; free fatty; influence free; interaction; membrane

Journal Title: Langmuir
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.