LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controlling Kinetic Pathways in Demixing Microgel–Micelle Mixtures

Photo by oliverschwendener from unsplash

We investigate the temperature-dependent phase behavior of mixtures of poly(N-isopropylacrylamide) (pNIPAM) microgel colloids and a triblock copolymer (PEO–PPO–PEO) surfactant. Usually, gelation in these systems results from an increase in temperature.… Click to show full abstract

We investigate the temperature-dependent phase behavior of mixtures of poly(N-isopropylacrylamide) (pNIPAM) microgel colloids and a triblock copolymer (PEO–PPO–PEO) surfactant. Usually, gelation in these systems results from an increase in temperature. Here we investigate the role of the heating rate, and surprisingly, we find that this causes the mechanism of aggregation to change from one which is driven by depletion of the microgels by the micelles at low temperatures to the association of the two species at high temperatures. We thus reveal two competing mechanisms for attractions between the microgel particles which can be controlled by changing the heating rate. We use this heating-rate-dependent response of the system to access multiple structures for the same system composition. Samples were found to demix into phases rich and poor in microgel particles at temperatures below 33 °C, under conditions where the microgels particles are partially swollen. Under rapid heating full demixing is bypassed, and gel networks are formed instead. The temperature history of the sample, therefore, allows for kinetic selection between different final structures, which may be metastable.

Keywords: controlling kinetic; demixing microgel; pathways demixing; kinetic pathways; microgel; heating rate

Journal Title: Langmuir
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.