LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrodynamic Characterization of Phase Separation in Devices with Microfabricated Capillaries

Photo from wikipedia

Capillary microseparators have been gaining interest in downstream unit operations, especially for pharmaceutical, space, and nuclear applications, offering efficient separation of two-phase flows. In this work, a detailed analysis of… Click to show full abstract

Capillary microseparators have been gaining interest in downstream unit operations, especially for pharmaceutical, space, and nuclear applications, offering efficient separation of two-phase flows. In this work, a detailed analysis of the dynamics of gas–liquid separation at the single meniscus level helped to formulate a model to map the operability region of microseparation devices. A water–nitrogen segmented flow was separated in a microfabricated silicon-glass device, with a main channel (width, W = 600 μm; height, H = 120 μm) leading into an array of 276 capillaries (100 μm long; width = 5 μm facing the main channel and 25 μm facing the liquid outlet), on both sides of the channel. At optimal pressure differences, the wetting phase (water) flowed through the capillaries into the liquid outlet, whereas the nonwetting phase (nitrogen) flowed past the capillaries into the gas outlet. A high-speed imaging methodology aided by computational analysis was used to quantify the length of the liquid slugs and their positions in the separation zone. It was observed that during stable separation, the position of the leading edge of the liquid slugs (advancing meniscus), which became stationary in the separation zone, was dependent only on the outlet pressure difference. The trailing edge of the liquid slugs (receding meniscus) approached the advancing meniscus at a constant speed, thus leading to a linear decrease of the liquid slug length. Close to the liquid-to-gas breakthrough point, that is, when water exited through the gas outlet, the advancing meniscus was no longer stationary, and the slug lengths decreased exponentially. The rates of decrease of the liquid slug length during separation were accurately estimated by the model, and the calculated liquid-to-gas breakthrough pressures agreed with experimental measurements.

Keywords: phase; liquid; outlet; gas; separation; meniscus

Journal Title: Langmuir
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.