LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C6F5)3 Lewis Pairs: Structures of Intermediates, Kinetics, and Mechanism

Photo by nickkarvounis from unsplash

The strong Lewis acid Al(C6F5)3, in combination with a strong Lewis base N-heterocyclic olefin (NHO), cooperatively promotes the living ring-opening (co)polymerization of lactones, represented by δ-valerolactone (δ-VL) and e-caprolactone (e-CL)… Click to show full abstract

The strong Lewis acid Al(C6F5)3, in combination with a strong Lewis base N-heterocyclic olefin (NHO), cooperatively promotes the living ring-opening (co)polymerization of lactones, represented by δ-valerolactone (δ-VL) and e-caprolactone (e-CL) in this study. Medium to high molecular weight linear (co)polyesters (Mw up to 855 kg/mol) are achieved, and most of them exhibit narrow molecular weight distributions (Đ as low as 1.02). Detailed investigations into the structures of key reaction intermediates, kinetics, and polymer structures have led to a polymerization mechanism, in that initiation involves nucleophilic attack of the Al(C6F5)3-activated monomer by NHO to form a structurally characterized zwitterionic, tetrahedral intermediate, followed by its ring-opening to generate active zwitterionic species. In the propagation cycle, this ring-opened zwitterionic species and its homologues attack the incoming monomer activated by Al(C6F5)3 to generate the tetrahedral intermediate, followed by the rate-deter...

Keywords: living ring; ring opening; polymerization; opening polymerization; polymerization lactones; heterocyclic olefin

Journal Title: Macromolecules
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.