LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controlled Crosslinking Is a Tool To Precisely Modulate the Nanomechanical and Nanotribological Properties of Polymer Brushes

Photo by trnavskauni from unsplash

Covalent crosslinking of weak polyelectrolyte brushes widens the tuning potential for their swelling, nanomechanical, and nanotribological properties, which can be simultaneously adjusted by varying the crosslinker content and the pH… Click to show full abstract

Covalent crosslinking of weak polyelectrolyte brushes widens the tuning potential for their swelling, nanomechanical, and nanotribological properties, which can be simultaneously adjusted by varying the crosslinker content and the pH of the surroundings. We demonstrate that this is especially valid for poly(hydroxyethyl methacrylate) (PHEMA) brushes and brush hydrogels, and their ionizable, succinate-modified derivatives (PHEMA-SA), covalently crosslinked with different amounts of di(ethylene glycol) dimethacrylate (DEGDMA) during surface-initiated atom transfer radical polymerization (SI-ATRP). Atomic force microscopy (AFM) methods highlight how pristine PHEMA films are stiff and display high coefficients of friction in water. Their succinate derivatives swell profusely in aqueous media. Under acidic conditions they are neutral, compliant, and lubricious, with apparent Young’s moduli (E*) lying between 10 and 30 kPa. Their contact mechanical behavior can be described by either the Johnson–Kendall–Roberts...

Keywords: crosslinking tool; precisely modulate; controlled crosslinking; nanotribological properties; nanomechanical nanotribological; tool precisely

Journal Title: Macromolecules
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.