LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antifouling Peptide Dendrimer Surface of Monodisperse Magnetic Poly(glycidyl methacrylate) Microspheres

Photo from wikipedia

Antifouling properties and stability in tissue fluids are crucial for the successful application of micro- and nanoparticles in biomedicine. In this study, we prepared monodisperse magnetic poly(glycidyl methacrylate) microspheres with… Click to show full abstract

Antifouling properties and stability in tissue fluids are crucial for the successful application of micro- and nanoparticles in biomedicine. In this study, we prepared monodisperse magnetic poly(glycidyl methacrylate) microspheres with amino groups (mgt.PGMA-NH2) by a multistep swelling polymerization of glycidyl methacrylate (GMA). This was followed by ammonolysis of oxirane groups and precipitation of iron oxides inside the particle pores to make the microspheres magnetic. To suppress nonspecific protein adsorption from biological media, the microspheres were covered by three generations of a compact amino acid dendritic network (Ser-Lys-Ser/Lys-Ser/Lys-Ser) using peptide chemistry. The resulting particles did not aggregate under physiological conditions and contained ∼1 mmol of NH2/g that was available for further modifications. Alkyne groups accessible for click chemistry were introduced to the dendrimer-coated particles by a reaction with 4-pentynoic acid. The external particle surface and internal b...

Keywords: monodisperse magnetic; chemistry; magnetic poly; glycidyl methacrylate

Journal Title: Macromolecules
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.