LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dependence of Morphology, Shear Modulus, and Conductivity on the Composition of Lithiated and Magnesiated Single-Ion-Conducting Block Copolymer Electrolytes

Photo by julienlphoto from unsplash

Single-ion-conducting block copolymers are of considerable interest as electrolytes for battery systems, as they eliminate overpotentials due to concentration gradients. In this study, we characterize a library of poly(ethylene oxide)… Click to show full abstract

Single-ion-conducting block copolymers are of considerable interest as electrolytes for battery systems, as they eliminate overpotentials due to concentration gradients. In this study, we characterize a library of poly(ethylene oxide) (PEO)-based diblock copolymers where the second block is poly(styrene-4-sulfonyltrifluoromethylsulfonyl)imide with either cation: univalent lithium or divalent magnesium counterions (PEO–PSLiTFSI or PEO–P[(STFSI)2Mg]). The PEO chain length is held fixed in this study. Polymers were synthesized in matched pairs that were identical in all aspects except for the identity of the counterion. Using rheology, SAXS, DSC, and AC impedance spectroscopy, we show that the dependence of morphology, modulus, and conductivity on composition in these charged copolymer systems is fundamentally different from uncharged block copolymers. At a given frequency and temperature, the shear moduli of the magnesiated copolymer systems were approximately 3–4 orders of magnitude higher than those of th...

Keywords: conducting block; single ion; block; dependence morphology; modulus conductivity; ion conducting

Journal Title: Macromolecules
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.