LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Primary Alkylphosphine–Borane Polymers: Synthesis, Low Glass Transition Temperature, and a Predictive Capability Thereof

Photo by jaenix from unsplash

With a multitude of potential applications, poly(phosphine–borane)s are an interesting class of polymer comprising main-group elements within the inorganic polymer backbone. A new family of primary alkylphosphine–borane polymers was synthesized… Click to show full abstract

With a multitude of potential applications, poly(phosphine–borane)s are an interesting class of polymer comprising main-group elements within the inorganic polymer backbone. A new family of primary alkylphosphine–borane polymers was synthesized by a solvent-free rhodium-catalyzed dehydrocoupling reaction and characterized by conventional chemicophysical techniques. The thermal stability of the polymers is strongly affected by the size and shape of the alkyl side chain with longer substituents imparting greater stability. The polymers show substantial stability toward UV illumination and immersion in water; however, they undergo a loss of alkylphosphine units during thermal degradation. The polymers exhibit glass transition temperatures (Tg) as low as −70 °C. A group interaction model (GIM) framework was developed to allow the semiquantitative prediction of Tg values, and the properties of the materials in this study were used to validate the model.

Keywords: borane; primary alkylphosphine; alkylphosphine borane; glass transition; borane polymers

Journal Title: Macromolecules
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.