LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

How the Complex Interplay between Different Blocks Determines the Isothermal Crystallization Kinetics of Triple-Crystalline PEO-b-PCL-b-PLLA Triblock Terpolymers

Photo by jancanty from unsplash

PEO-b-PCL-b-PLLA triblock terpolymers are fascinating triple-crystalline materials. In this work, the isothermal crystallization kinetics of these terpolymers evaluated by differential scanning calorimetry (DSC) is presented for the first time and… Click to show full abstract

PEO-b-PCL-b-PLLA triblock terpolymers are fascinating triple-crystalline materials. In this work, the isothermal crystallization kinetics of these terpolymers evaluated by differential scanning calorimetry (DSC) is presented for the first time and compared to analogous PCL-b-PLLA diblock copolymers and to PLLA, PCL, and PEO homopolymers. The results are complemented by in situ SAXS/WAXS synchrotron experiments. One-, two-, and three-step crystallization protocols were employed to study the crystallization kinetics of the blocks. At PLLA block crystallization temperatures, both PCL and PEO molten chains caused a strong plasticizing effect on the PLLA block crystallization, and the overall crystallization rate of the PLLA block in the terpolymers was higher than that in the PLLA-b-PCL diblock copolymers. In the case of the PCL block, the crystallization was followed after PLLA was fully crystallized (two-step crystallization). A nucleating effect induced by the previously formed PLLA crystals was observed. ...

Keywords: peo pcl; crystallization; plla; pcl plla; crystallization kinetics

Journal Title: Macromolecules
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.