LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of Highly Defined Graft Copolymers Using a Cyclic Acetal Moiety as a Two-Stage Latent Initiating Site for Successive Living Cationic Polymerization and Ring-Opening Anionic Polymerization

Photo from wikipedia

The synthesis of well-defined graft copolymers with designed intervals between branches was achieved using cyclic acetal moieties as two-stage latent initiating sites. A cyclic acetal was shown to initiate the… Click to show full abstract

The synthesis of well-defined graft copolymers with designed intervals between branches was achieved using cyclic acetal moieties as two-stage latent initiating sites. A cyclic acetal was shown to initiate the living cationic polymerization of vinyl ethers (VEs), yielding a polymer with a hydroxy group at the α-end derived from the cyclic acetal. The newly generated hydroxy group was able to efficiently induce the subsequent ring-opening anionic polymerization of l-lactide (LLA), and a diblock copolymer with a narrow molecular weight distribution (MWD) was obtained. For the synthesis of a graft copolymer, a five-membered cyclic acetal moiety was introduced at the ω-chain ends of poly(VE)s, which was employed as the initiating site for the living cationic polymerization of VEs. Repeated polymerization and acetalization generated a macroinitiator with several hydroxy groups on the side chain of a poly(VE) backbone. Graft copolymers possessing branches with narrow MWDs and regular spaces between the branches...

Keywords: cyclic acetal; cationic polymerization; polymerization; graft copolymers; living cationic

Journal Title: Macromolecules
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.