LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Temperature-Dependent Order-to-Order Transition of Polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene Triblock Copolymer under Multilayered Confinement

Photo by jakubzerdzicki from unsplash

The order-to-order transition (OOT) plays a key role in the nanotechnological applications of block copolymer (BCP) and is dramatically dependent on the spatial environment. A multilayer-confined space has been fabricated… Click to show full abstract

The order-to-order transition (OOT) plays a key role in the nanotechnological applications of block copolymer (BCP) and is dramatically dependent on the spatial environment. A multilayer-confined space has been fabricated by layer-multiplying coextrusion technology to investigate the OOT mechanism of polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene triblock copolymer (SEBS) under multilayered confinement. The parallel oriented ordering front, whose OOT temperature is lower than that of the bulk due to higher free energy, is induced by the “substrate surface effect” in the SEBS layers of the multilayer specimens. The OOT temperature of SEBS is mainly decided by the volume fraction of ordering front. The propagation distance maximum of the “substrate surface effect” is about 220 nm. Only when the thickness of SEBS layer is less than this critical value is the whole SEBS layer fully filled with the ordering front. As a result, the OOT temperature first decreases rapidly and then tends to be a c...

Keywords: order order; order; temperature; block; polystyrene; copolymer

Journal Title: Macromolecules
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.