Gelation of aqueous methylcellulose (MC) solutions upon heating has been shown to result from the formation of a network of semiflexible fibrils, with diameters of 15 ± 2 nm. Here,… Click to show full abstract
Gelation of aqueous methylcellulose (MC) solutions upon heating has been shown to result from the formation of a network of semiflexible fibrils, with diameters of 15 ± 2 nm. Here, we investigate the impact of MC molecular weight on the elasticity and structure of aqueous gels at concentrations between 0.1 and 3 wt %. Small-amplitude oscillatory shear measurements conducted at a fixed concentration reveal that the gel modulus increases monotonically by a factor of 5 for weight-average molecular weights (Mw) between 22 and 550 kg/mol. Small-angle X-ray scattering data, fit to a semiflexible cylinder model, demonstrate that the fibril radius, Kuhn length, and volume fraction are approximately constant throughout this molecular weight range. Small-angle light scattering shows that the fibrillar-rich and fibrillar-depleted domains within the gel are associated with an essentially invariant heterogeneity correlation length. Direct visualization by cryo-TEM reveals that lower molecular weight MC forms fibrils o...
               
Click one of the above tabs to view related content.