LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Concentration on the Dissolution of One-Dimensional Polymer Crystals: A TEM and NMR Study

Photo by aaronburden from unsplash

We report a study of the dissolution of core-crystalline polyferrocenyldimethylsilane-block-polyisoprene (PFS53-b-PI637, where the subscripts are the degrees of polymerization of the two blocks) micelle fragments in decane for different concentrations… Click to show full abstract

We report a study of the dissolution of core-crystalline polyferrocenyldimethylsilane-block-polyisoprene (PFS53-b-PI637, where the subscripts are the degrees of polymerization of the two blocks) micelle fragments in decane for different concentrations (ranging from 0.01 to 6 mg mL–1) by a combination of transmission electron microscopy (TEM) and high-temperature 1H NMR. We used self-seeding experiments at different temperatures as an efficient, although indirect, way to evaluate the dissolution of these micelles fragments. We annealed micelle fragment solutions at five different temperatures (50, 60, 65, 70, and 75 °C) for 30 min and cooled them to room temperature to regrow the micelles. The amount of micelle fragments that dissolved at the annealing temperature was then evaluated by comparing the length of the regrown micelles with that of the starting micelle fragments. We show that seed crystallites are less prone to dissolution as their concentration increases. In addition, by combining results of se...

Keywords: micelle fragments; effect concentration; study; dissolution; concentration dissolution

Journal Title: Macromolecules
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.