LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile Synthesis of Aliphatic ω-Pentadecalactone Containing Diblock Copolyesters via Sequential ROP with l-Lactide, ε-Caprolactone, and δ-Valerolactone Catalyzed by Cyclic Trimeric Phosphazene Base with Inherent Tribasic Characteristics

Photo by pinjasaur from unsplash

Degradable long-chain aliphatic polyesters are promising alternatives to polyolefins. The ring-opening polymerization (ROP) of ω-pentadecalactone (PDL) enables the synthesis of aliphatic polyesters with melting temperature close to low-density polyethylene (LDPE).… Click to show full abstract

Degradable long-chain aliphatic polyesters are promising alternatives to polyolefins. The ring-opening polymerization (ROP) of ω-pentadecalactone (PDL) enables the synthesis of aliphatic polyesters with melting temperature close to low-density polyethylene (LDPE). However, this ROP reaction is of great challenge because of low ring strain of the PDL monomer. The occurrence of intra- and intermolecular transesterification reactions during ROP made it difficult to prepare well-defined block copolyesters for advanced properties. In this context, cyclic trimeric phosphazene base (CTPB) in combination with benzyl alcohol (BnOH) was proved to be an efficient initiator system for ROP of PDL, showing an excellent polymerization rate (TOF up to 600 h–1) at 80 °C. Well-defined diblock copolyesters, i.e., PPDL-b-PLLA, can be easily synthesized by sequential addition of PDL and l-lactide (L-LA). In contrast, sequential addition of PDL and e-caprolactone (CL) or δ-valerolactone (VL) only led to the random copolyesters...

Keywords: diblock copolyesters; phosphazene base; rop; trimeric phosphazene; cyclic trimeric; synthesis aliphatic

Journal Title: Macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.