Anisotropic nanoparticles exhibit interesting properties and their controlled assemblies are highly desirable to generate functional materials. Different from their spherical counterparts, the incorporation of anisotropic nanoparticles in nanostructured polymeric matrices… Click to show full abstract
Anisotropic nanoparticles exhibit interesting properties and their controlled assemblies are highly desirable to generate functional materials. Different from their spherical counterparts, the incorporation of anisotropic nanoparticles in nanostructured polymeric matrices such as block copolymer or supramolecules depends not only on the particle/polymer interactions and relative size ratio between the particle and polymer features but also on the interparticle interactions. Here, we fill this knowledge gap by systematically studying the block copolymer-based supramolecular nanocomposite containing anisotropic copper sulfide nanodiscs, and evaluate the effect of competition between the ligand–polymer interaction and internanodisc interaction on the arrangement and interparticle spacing of nanodiscs once blended with supramolecules. The interdisc interaction was modulated by varying the ligand density and/or the ligand shell thickness on the surface of nanodiscs. Reduction in the interdisc interaction leads...
               
Click one of the above tabs to view related content.