LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conformation of Tunable Nanocylinders: Up to Sixth-Generation Dendronized Polymers via Graft-Through Approach by ROMP

Photo from wikipedia

Well-defined dendronized polymers (denpols) bearing high-generation dendron are attractive nano-objects as high persistency provides distinct properties, contrast to the random coiled linear polymers However, their syntheses via graft-through approach have… Click to show full abstract

Well-defined dendronized polymers (denpols) bearing high-generation dendron are attractive nano-objects as high persistency provides distinct properties, contrast to the random coiled linear polymers However, their syntheses via graft-through approach have been very challenging due to their structural complexity and steric hindrance retarding polymerization. Here, we report the first example of the synthesis of poly(norbornene) (PNB) containing ester dendrons up to the sixth generation (G6) by ring-opening metathesis polymerization. This is the highest generation ever polymerized among dendronized polymers prepared by graft-through approach, producing denpols with molecular weight up to 1960 kg/mol. Combination of size-exclusion chromatography, light scattering, and neutron scattering allowed a thorough structural study of these large denpols in dilute solution. A semiflexible cylinder model was successfully applied to represent both the static and dynamic experimental quantities yielding persistent length (lp), cross-sectional radius (Rcs), and contour length (L). The denpol persistency seemed to increase with generation, with lp reaching 27 nm (Kuhn length 54 nm) for PNB-G6, demonstrating a rod-like conformation. Poly(endo-tricycle[4.2.2.0]deca-3,9-diene) (PTD) denpols exhibited larger persistency than the PNB analogues of the same generation presumably due to the higher grafting density of the PTD denpols. As the dendritic side chains introduce shape anisotropy into the denpol backbone, future work will entail a study of these systems in the concentrated solutions and melts.

Keywords: via graft; generation; sixth generation; dendronized polymers; graft approach

Journal Title: Macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.