LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Repulsion between Colloidal Particles Mediated by Nonadsorbing Polymers: Lattice Monte Carlo Simulations and the Corresponding Self-Consistent Field Calculations

Photo by glenncarstenspeters from unsplash

Using a lattice self-consistent field (SCF) theory and the corresponding lattice Monte Carlo (MC) simulations combined with our recently proposed Z method [Zhang, P.; Wang, Q. Soft Matter 2015, 11,… Click to show full abstract

Using a lattice self-consistent field (SCF) theory and the corresponding lattice Monte Carlo (MC) simulations combined with our recently proposed Z method [Zhang, P.; Wang, Q. Soft Matter 2015, 11, 862], we examined athermal homopolymer solutions confined between two parallel and nonabsorbing surfaces and in equilibrium with a bulk solution and accurately calculated the effective interaction between the two surfaces. By directly comparing our MC results with SCF predictions based on the same model system, we were able to quantitatively and unambiguously distinguish the mean-field and the fluctuation contributions to the effective interaction. We found for the first time the fluctuation-induced repulsion between the two confining surfaces at intermediate separation predicted by Semenov and Obukhov [Obukhov, S. P.; Semenov, A. N. Phys. Rev. Lett. 2005, 95, 038305; Semenov, A. N.; Obukhov, S. P. J. Phys.: Condens. Matter 2005, 17, S1747], which is about one order of magnitude stronger than that due solely to...

Keywords: monte carlo; field; consistent field; lattice monte; carlo simulations; self consistent

Journal Title: Macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.