LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Living Initiator-Transfer Anionic Polymerization of Isocyanates by Sodium Diphenylamide

Photo from wikipedia

Access to protein-inspired polyisocyanates with high molecular weights (MWs) from anionic polymerization of isocyanates is challenging as it requires exceptional livingness. For this purpose, a dimerically self-associated sodium diphenylamide (NaDPA)… Click to show full abstract

Access to protein-inspired polyisocyanates with high molecular weights (MWs) from anionic polymerization of isocyanates is challenging as it requires exceptional livingness. For this purpose, a dimerically self-associated sodium diphenylamide (NaDPA) was introduced as a robust chain-end-protective initiator in the anionic polymerization of n-hexyl isocyanate (HIC) in the absence or presence of sodium tetraphenylborate (NaBPh4) additive. At [NaDPA]0/[NaBPh4]0 = 5, unusual one-half initiation efficiency and one-half order of reaction kinetics were observed. Accordingly, initiator-transfer anionic polymerization (ITAP), a mechanism driven by the dimer of NaDPA ((NaDPA)2) in a dual role is proposed, in which one unimer initiates the polymerization and the other reversibly deactivates the propagating chain end through its repetitive cycles of 1:1 cross-association/dissociation. Living ITAP by NaDPA with NaBPh4 was proven by X-ray crystallography, density functional theory calculation, and quantitative yield of...

Keywords: polymerization; polymerization isocyanates; initiator transfer; anionic polymerization; sodium diphenylamide; transfer anionic

Journal Title: Macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.