LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular Dynamics in Polystyrene Single-Chain Nanoparticles

Photo by trnavskauni from unsplash

The molecular dynamics of polystyrene (PS) single-chain nanoparticles (SCNPs) with variable molecular weights and irreversible intramolecular cross-linking densities was studied, by employing broadband dielectric spectroscopy, supplemented by calorimetry (differential scanning… Click to show full abstract

The molecular dynamics of polystyrene (PS) single-chain nanoparticles (SCNPs) with variable molecular weights and irreversible intramolecular cross-linking densities was studied, by employing broadband dielectric spectroscopy, supplemented by calorimetry (differential scanning calorimetry, DSC), in the melt. Regarding segmental dynamics, the α relaxation process was found to be retarded for low and moderate cross-linker fractions (CrFs), in agreement with the shift of the corresponding calorimetric glass transitions. Intriguingly, our data indicate that the dynamical behavior of SCNPs is strongly affected by the macromolecular characteristic of the PS precursors, that is, molecular weight (Mn) and CrF, as a secondary, Arrhenius-like relaxation process, β*, appears in SCNPs with CrFs larger than a critical value. Our measurements reveal a transition from a strongly heterogeneous structure in loose SCNPs to a homogeneously compact structure in rigid SCNPs with increasing CrF. We propose a dynamic “phase dia...

Keywords: polystyrene single; dynamics polystyrene; molecular dynamics; chain nanoparticles; single chain

Journal Title: Macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.