LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lewis Pair Polymerization of Renewable Indenone to Erythro-Ditactic High-Tg Polymers with an Upcycling Avenue

Photo by trnavskauni from unsplash

Preparation and storage of biorenewable, monomeric indenone, much less the polymerization to a well-defined, high-molecular-weight polymer, is challenging because of antiaromaticity-driven radical autopolymerization. Herein, we report the successful preparation and… Click to show full abstract

Preparation and storage of biorenewable, monomeric indenone, much less the polymerization to a well-defined, high-molecular-weight polymer, is challenging because of antiaromaticity-driven radical autopolymerization. Herein, we report the successful preparation and subsequent Lewis pair polymerization (LPP) of indenone without autopolymerization side reactions using Lewis pairs consisting of sterically encumbered Lewis acid (LA) catalysts, such as B(C6F5)3 and bis(2,6-tert-butyl-4-methylphenoxy)methylaluminum and Lewis base initiators such as silyl ketene acetal and N-heterocyclic olefin nucleophiles. Thus, for the first time, the LPP enabled the synthesis of polyindenone (Pin) with high number-average molecular weight (Mn = 1.72 × 105 g mol–1) and low dispersity (D = 1.13). Observed correlations between the steric bulk of the LA catalyst and diastereoselectivity (57–75%) created the opportunity to model and investigate the relationships between β-substituted monomer motifs, catalyst steric accessibility...

Keywords: polymerization renewable; polymerization; lewis pair; renewable indenone; pair polymerization; indenone

Journal Title: Macromolecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.