Recently, supramolecular coordination complexes (SCCs) based on photosensitizers as bridging ligands have attracted great attention in cancer therapy owing to their synergistic effect between photodynamic therapy (PDT) and chemotherapy. Herein,… Click to show full abstract
Recently, supramolecular coordination complexes (SCCs) based on photosensitizers as bridging ligands have attracted great attention in cancer therapy owing to their synergistic effect between photodynamic therapy (PDT) and chemotherapy. Herein, a highly emissive supramolecular platinum triangle BTZPy-Pt based on a novel type of photosensitizer BTZPy with thermally activated delayed fluorescence (TADF) was fabricated. The BTZPy and BTZPy-Pt exhibited strong luminescence emission in the visible range with high quantum yields (quantum yields (QYs) for BTZPy and BTZPy-Pt were about 78 and 62% in ethanol solutions, respectively). Additionally, BTZPy had been proved to be an excellent photosensitizer with superior 1O2 generation capability (the 1O2 generation quantum yield reached up to ca. 95%) for PDT. By the combination of the excellent phototoxicity of BTZPy and the antitumor activity of the Pt center, the platinum triangle BTZPy-Pt demonstrated a highly efficient anticancer performance toward HeLa cells (IC50: 0.5 μg mL-1). This study not only provides a blueprint to fabricate new types of photosensitizers but also paves a way to design novel SCCs for efficient PDT.
               
Click one of the above tabs to view related content.