Surfactants are commonly incorporated into amorphous formulations to improve the wetting and dissolution of hydrophobic drugs. Using X-ray photoelectron spectroscopy, we find that a surfactant can significantly enrich at the… Click to show full abstract
Surfactants are commonly incorporated into amorphous formulations to improve the wetting and dissolution of hydrophobic drugs. Using X-ray photoelectron spectroscopy, we find that a surfactant can significantly enrich at the surface of an amorphous drug, up to 100% coverage, wihout phase separation in the bulk. We compared four different surfactants (Span 80, Span 20, Tween 80, and Tween 20) in the same host acetaminophen and the same surfactant Span 80 in four different hosts (acetaminophen, lumefantrine, posaconazole, and itraconazole). For each system, the bulk concentrations of the surfactants were 0, 1, 2, 5, and 10 wt %, which cover the typical concentrations in amorphous formulations, and component miscibility in the bulk was confirmed by differential scanning calorimetry. For all systems investigated, we observed significant surface enrichment of the surfactants. For acetaminophen containing different surfactants, the strongest surface enrichment occurred for the most lipophilic Span 80 (lowest HLB), with nearly full surface coverage. For the same surfactant Span 80 doped in different drugs, the surface enrichment effect increases with the hydrophilicity of the drug (decreasing log P). These effects arise because low-surface-energy molecules (or molecular fragments) tend to enrich at a liquid/vapor interface. This study highlights the potentially large difference between the surface and bulk compositions of an amorphous formulation. Given their high mobility and low glass transition temperature, the surface enrichment of surfactants in an amorphous drug can impact its stability, wetting, and dissolution.
               
Click one of the above tabs to view related content.