LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solvent-Mediated Polymorphic Transformations in Molten Polymers: The Account of Acetaminophen.

Photo by jontyson from unsplash

Solvent-mediated polymorphic transformations (SMPTs) employing nonconventional solvents (polymer melts) is an underexplored research topic that limits the application of polymer-based formulation processes. Acetaminophen (ACM), a widely studied active pharmaceutical ingredient… Click to show full abstract

Solvent-mediated polymorphic transformations (SMPTs) employing nonconventional solvents (polymer melts) is an underexplored research topic that limits the application of polymer-based formulation processes. Acetaminophen (ACM), a widely studied active pharmaceutical ingredient (API), is known to present SMPTs spontaneously (<30 s) in conventional solvents such as ethanol. In situ Raman spectroscopy was employed to monitor the induction time for the SMPT of ACM II to I in polyethylene glycol (PEG) melts of different molecular weights (Mw, 4000, 10 000, 20 000, 35 000 g/mol). The results presented here demonstrate that the induction time for the SMPT of ACM II to I in PEG melts is driven by its diffusivity through the polymer melts. Compared to conventional solvents (i.e., ethanol) the mass transfer (diffusion coefficient, D) in melts is significantly hindered (Dethanol = 4.84 × 10-9 m2/s > DPEGs = 5.32 × 10-11-8.36 × 10-14 m2/s). Ultimately, the study proves that the induction time for the SMPT can be tuned by understanding the dispersant's physicochemical properties (i.e., η) and, thus, the D of the solute in the dispersant. This allows one to kinetically access and stabilize metastable forms or delay their transformations under given process conditions.

Keywords: polymorphic transformations; time smpt; induction time; transformations molten; solvent mediated; mediated polymorphic

Journal Title: Molecular pharmaceutics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.