LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Engineered Fenofibrate as Oxidation-Sensitive Nanoparticles with ROS Scavenging and PPARα-Activating Bioactivity to Ameliorate Nonalcoholic Fatty Liver Disease.

Photo by sangriasenorial from unsplash

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in western countries and China. Fenofibrate (FNB) can activate peroxisome proliferator-activated receptor α (PPARα) to increase fatty acid… Click to show full abstract

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in western countries and China. Fenofibrate (FNB) can activate peroxisome proliferator-activated receptor α (PPARα) to increase fatty acid oxidation and ameliorate NAFLD. However, the application of FNB is limited in clinic due to its poor water solubility and low oral bioavailability. In this study, FNB-loaded nanoparticles (FNB-NP) based on a reactive oxygen species (ROS)-responsive peroxalate ester derived from vitamin E (OVE) and an amphiphilic conjugate 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG) were developed to enhance the preventive effects of FNB against NAFLD. In in vitro studies, FNB-NP displayed a high encapsulation efficiency of 97.25 ± 0.6% and a drug loading efficiency of 29.67 ± 0.1%, with a size of 197.0 ± 0.2 nm. FNB released from FNB-NP was dramatically accelerated in the medium with high H2O2 concentrations. Moreover, FNB-NP exhibited well storage stability and plasma stability. In pharmacokinetic (PK) studies, FNB-NP, compared with FNB crude drug, significantly increased the AUC0→t and AUC0→∞ of the plasma FNB acid by 3.3- and 3.4-fold, respectively. In pharmacodynamics (PD) studies, compared with an equal dose of FNB crude drug, FNB-NP more significantly reduced hepatic lipid deposition via facilitating FNB release in the liver and further upregulating PPARα expression in NAFLD mice. Meanwhile, oxidative stress in NAFLD was significantly suppressed after FNB-NP administration, suggesting that OVE plays a synergistic effect on antioxidation. Therefore, ROS-sensitive FNB delivery formulations FNB-NP enhance the preventive effects of FNB against NAFLD and could be further studied as a promising drug for the treatment of NAFLD in clinic.

Keywords: nonalcoholic fatty; fnb; ppar; fatty liver; liver disease

Journal Title: Molecular pharmaceutics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.