LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum Dot Based Luminescent Nanoprobes for Sigma-2 Receptor Imaging.

Photo from wikipedia

The increasing importance of sigma-2 receptor as target for the diagnosis and therapy of tumors paves the way for the development of innovative optically traceable fluorescent probes as tumor cell… Click to show full abstract

The increasing importance of sigma-2 receptor as target for the diagnosis and therapy of tumors paves the way for the development of innovative optically traceable fluorescent probes as tumor cell contrast and therapeutic agents. Here, a novel hybrid organic-inorganic nanostructure is developed by combining the superior fluorescent properties of inorganic quantum dots (QDs), coated with a hydrophilic silica shell (QD@SiO2 NPs), the versatility of the silica shell, and the high selectivity for sigma-2 receptor of the two synthetic ligands, namely, the 6-[(6-aminohexyl)oxy]-2-(3-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)propyl)-3,4-dihydroisoquinolin-1(2H)-one (MLP66) and 6-[1-[3-(4-cyclohexylpiperazin-1-yl)propyl]-1,2,3,4-tetrahydronaphthalen-5-yloxy]hexylamine (TA6). The proposed nanostructures represent a challenging alternative to all previously studied organic small fluorescent molecules, based on the same sigma-2 receptor affinity moieties. Flow cytometry and confocal fluorescence microscopy experiments, respectively, on fixed and living cancerous MCF7 cells, which overexpress the sigma-2 receptor, prove the ability of functionalized (QD@SiO2-TA6 and QD@SiO2-MLP66) NPs to be internalized and demonstrate their affinity to the sigma-2 receptor, ultimately validating the targeting properties conveyed to the NPs by sigma-2 ligand conjugation. The presented QD-based nanoprobes possess a great potential as in vitro selective sigma-2 receptor imaging agent and, consequently, could provide a significant impact to future theranostic applications.

Keywords: receptor imaging; quantum dot; dot based; sigma receptor; receptor

Journal Title: Molecular pharmaceutics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.