LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Isotopically-Labeled Iodoacetamide-Alkyne Probes for Quantitative Cysteine-Reactivity Profiling.

Photo by hngstrm from unsplash

Cysteine residues on proteins serve a variety of catalytic and regulatory functions due to the high nucleophilicity and redox activity of the thiol group. Quantitative proteomic platforms for profiling cysteine… Click to show full abstract

Cysteine residues on proteins serve a variety of catalytic and regulatory functions due to the high nucleophilicity and redox activity of the thiol group. Quantitative proteomic platforms for profiling cysteine reactivity can provide valuable information related to the post-translational modification state and inhibitor occupancy of functional cysteine residues within a complex proteome. Cysteine-reactivity profiling typically monitors changes in the extent of cysteine labeling by cysteine-reactive chemical probes, such as iodoacetamide (IA)-alkyne. To enable accurate measurements of cysteine reactivity changes, isotopic labels are introduced into the two proteomes of interest using either isotopically tagged proteomes (SILAC) or cleavable linkers (isoTOP-ABPP) that are installed using copper-catalyzed azide-alkyne cycloaddition (CuAAC). Here we provide an alternative strategy for isotopic tagging of two proteomes for cysteine-reactivity profiling by developing IA-light and IA-heavy, a pair of isotopically labeled iodoacetamide-alkyne probes. These probes can be utilized for proteome samples that are not amenable to SILAC labeling and are facile to synthesize, especially when compared to the isotopically tagged cleavable linkers. We confirm the quantitative accuracy of IA-light and IA-heavy by assessing cysteine reactivity in a purified thioredoxin protein, as well as globally within a complex proteome where IA-light treatment generates mass-spectrometry identification of 992 cysteine residues. Importantly, these isotopically tagged probes can also be utilized for quantifying the percentage of cysteine modification within a single sample. Preliminary data supports the use of these tags to quantify the stoichiometry of TCEP-susceptible cysteine oxidation events in cell lysates.

Keywords: reactivity profiling; cysteine; iodoacetamide alkyne; isotopically labeled; cysteine reactivity

Journal Title: Molecular pharmaceutics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.