LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chalcone Based Homodimeric PET Agent, 11C-(Chal)2DEA-Me, for Beta Amyloid Imaging: Synthesis and Bioevaluation.

Photo by indulachanaka from unsplash

Homodimeric chalcone based 11C-PET radiotracer, 11C-(Chal)2DEA-Me, was synthesized, and binding affinity toward beta amyloid (Aβ) was evaluated. The computational studies revealed multiple binding of the tracer at the recognition sites… Click to show full abstract

Homodimeric chalcone based 11C-PET radiotracer, 11C-(Chal)2DEA-Me, was synthesized, and binding affinity toward beta amyloid (Aβ) was evaluated. The computational studies revealed multiple binding of the tracer at the recognition sites of Aβ fibrils. The bivalent ligand 11C-(Chal)2DEA-Me displayed higher binding affinity compared to the corresponding monomer, 11C-Chal-Me, and classical Aβ agents. The radiolabeling yield with carbon-11 was 40-55% (decay corrected) with specific activity of 65-90 GBq/μmol. A significant ( p < 0.0001) improvement in the binding affinity of 11C-(Chal)2DEA-Me with synthetic Aβ42 aggregates over the monomer, 11C-Chal-Me, demonstrates the utility of the bivalent approach. The PET imaging and biodistribution data displayed suitable brain pharmacokinetics of both ligands with higher brain uptake in the case of the bivalent ligand. Metabolite analysis of healthy ddY mouse brain homogenates exhibited high stability of the radiotracers in the brain with >93% intact tracer at 30 min post injection. Both chalcone derivatives were fluorescent in nature and demonstrated significant changes in the emission properties after binding with Aβ42. The preliminary analysis indicates high potential of 11C-(Chal)2DEA-Me as in vivo Aβ42 imaging tracer and highlights the significance of the bivalent approach to achieve a higher biological response for detection of early stages of amyloidosis.

Keywords: chal 2dea; 11c chal; beta amyloid; chalcone based

Journal Title: Molecular pharmaceutics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.