LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biological-Profiling-Based Systematic Analysis of Rhizoma Coptidis from Different Growing Regions and Its Anticholesterol Biosynthesis Activity on HepG2 Cells.

Photo from wikipedia

Rhizoma Coptidis is a widely cultivated traditional Chinese herb. Although the chemical profiles of Rhizoma Coptidis have been established previously, the biological profiling of Rhizoma Coptidis has not been conducted… Click to show full abstract

Rhizoma Coptidis is a widely cultivated traditional Chinese herb. Although the chemical profiles of Rhizoma Coptidis have been established previously, the biological profiling of Rhizoma Coptidis has not been conducted yet. In this study, we collected Rhizoma Coptidis varieties from four distinct growing regions and performed genome-wide biological response fingerprinting (BioReF) on HepG2 cells using a gene expression array. Similar biological pathways were affected by extracts of all four Rhizoma Coptidis varieties but not by their analogue, Mahoniae Caulis. Among these pathways, the terpenoid backbone biosynthesis pathway was highly enriched, and six genes in the mevalonate (MVA) pathway were all down-regulated. However, the expression, maturation, as well as the specific DNA binding capacity of their coordinate transcription factor, sterol response element binding protein 2 (SREBP2), was not affected by Rhizoma Coptidis extract (RCE) or its typical active alkaloid berberine. Cellular cholesterol content tests further verified the cholesterol-lowering function of RCE in vitro, which supplements evidence for the use of Rhizoma Coptidis in hyperlipidemia treatment. This is the first described example of evaluating the quality of Rhizoma Coptidis with BioReF and a good demonstration of using BioReF to uncover the mechanisms of herbs at a systematic level.

Keywords: coptidis; rhizoma coptidis; hepg2 cells; biological profiling; growing regions

Journal Title: Molecular pharmaceutics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.