LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Polymer Chain Length on the Physical Stability of Amorphous Drug-Polymer Blends at Ambient Pressure.

Photo by schluditsch from unsplash

Rational selection of polymers for amorphous drug stabilization is necessary for further successful development of solid dispersion technology. In this paper, we investigate the effect of polymer chain length on… Click to show full abstract

Rational selection of polymers for amorphous drug stabilization is necessary for further successful development of solid dispersion technology. In this paper, we investigate the effect of polymer chain length on the inhibition of amorphous drug recrystallization. To consider this problem, we prepared a drug-polymer blend (in 10:1 drug to polymer ratio) containing bicalutamide (BIC) and polyvinylpyrrolidone (PVP) with different chain lengths K10, K30, and K90. We applied broadband dielectric spectroscopy to compare the molecular dynamics of investigated samples and thoroughly recognize their crystallization tendencies from supercooled liquid state. Despite the lack of differences in molecular dynamics, we noticed significant changes in their crystallization rates. To rationalize such behavior, we performed positron annihilation lifetime spectroscopy measurements. The results showed that the value of free volume was the highest for blend with PVP K90, which at the same time was characterized by the greatest tendency to crystallize. We postulate that the polymer chain, depending on its length, can have different configurations in the space, leading to better or worse sample stabilization. Our results highlight how important is detailed understanding of physical properties of polymers for judicious selection of the best stabilization approach.

Keywords: polymer; drug; amorphous drug; spectroscopy; polymer chain

Journal Title: Molecular pharmaceutics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.