Coloration efficiency is an important figure of merit in electrochromic windows. Though it is thought to be an intrinsic material property, we tune optical modulation by effective utilization of ion… Click to show full abstract
Coloration efficiency is an important figure of merit in electrochromic windows. Though it is thought to be an intrinsic material property, we tune optical modulation by effective utilization of ion intercalation sites. Specifically, we enhance the coloration efficiency of m-WO2.72 nanocrystal films by selectively intercalating sodium ions into optically active hexagonal sites. To accurately measure coloration efficiencies, significant degradation during cycling is mitigated by introducing atomic-layer-deposited Al2O3 layers. Galvanostatic spectroscopic measurement shows that the site-selective intercalation of sodium ions in hexagonal tunnels enhances the coloration efficiency compared to a nonselective lithium ion-based electrolyte. Electrochemical rate analysis shows insertion of sodium ions to be capacitive-like, another indication of occupying hexagonal sites. Our results emphasize the importance of different site occupation on spectroelectrochemical properties, which can be used for designing materials and selecting electrolytes for enhanced electrochromic performance. In this context, we suggest sodium ion-based electrolytes hold unrealized potential for tungsten oxide electrochromic applications.
               
Click one of the above tabs to view related content.