LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Coloration Efficiency of Electrochromic Tungsten Oxide Nanorods by Site Selective Occupation of Sodium Ions.

Photo from wikipedia

Coloration efficiency is an important figure of merit in electrochromic windows. Though it is thought to be an intrinsic material property, we tune optical modulation by effective utilization of ion… Click to show full abstract

Coloration efficiency is an important figure of merit in electrochromic windows. Though it is thought to be an intrinsic material property, we tune optical modulation by effective utilization of ion intercalation sites. Specifically, we enhance the coloration efficiency of m-WO2.72 nanocrystal films by selectively intercalating sodium ions into optically active hexagonal sites. To accurately measure coloration efficiencies, significant degradation during cycling is mitigated by introducing atomic-layer-deposited Al2O3 layers. Galvanostatic spectroscopic measurement shows that the site-selective intercalation of sodium ions in hexagonal tunnels enhances the coloration efficiency compared to a nonselective lithium ion-based electrolyte. Electrochemical rate analysis shows insertion of sodium ions to be capacitive-like, another indication of occupying hexagonal sites. Our results emphasize the importance of different site occupation on spectroelectrochemical properties, which can be used for designing materials and selecting electrolytes for enhanced electrochromic performance. In this context, we suggest sodium ion-based electrolytes hold unrealized potential for tungsten oxide electrochromic applications.

Keywords: coloration efficiency; sodium; site; sodium ions; coloration

Journal Title: Nano letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.