LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanoscale Optical Addressing of Valley Pseudospins through Transverse Optical Spin

Photo from wikipedia

Valley pseudospin has emerged as a good quantum number to encode information, analogous to spin in spintronics. Two-dimensional transition metal dichalcogenides (2D TMDCs) recently attracted enormous attention for their easy… Click to show full abstract

Valley pseudospin has emerged as a good quantum number to encode information, analogous to spin in spintronics. Two-dimensional transition metal dichalcogenides (2D TMDCs) recently attracted enormous attention for their easy access to the valley pseudospin through valley-dependent optical transitions. Different ways have been reported to read out the valley pseudospin state. For practical applications, on-chip access to and manipulation of valley pseudospins is paramount, not only to read out but especially to initiate the valley pseudospin state. Here, we experimentally demonstrate the selective on-chip, optical near-field initiation of valley pseudospins at room temperature. We exploit a nanowire optical waveguide, such that the local transverse optical spin of its guided modes selectively excites a specific valley pseudospin. Furthermore, spin-momentum locking of the transverse optical spin enables us to flip valley pseudospins with the opposite propagation direction. Thus, we open up ways to realize integrated hybrid opto-valleytronic devices.

Keywords: optical spin; valley pseudospins; valley pseudospin; valley; transverse optical

Journal Title: Nano Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.