Due to their tunable bandgaps and strong spin-valley locking, transition metal dichalcogenides constitute a unique platform for hosting single-photon emitters. Here, we present a versatile approach for creating bright single-photon… Click to show full abstract
Due to their tunable bandgaps and strong spin-valley locking, transition metal dichalcogenides constitute a unique platform for hosting single-photon emitters. Here, we present a versatile approach for creating bright single-photon emitters in WSe2 monolayers by the deposition of gold nanostars. Our molecular dynamics simulations reveal that the formation of the quantum emitters is caused by the highly localized strain fields created by the sharp tips of the gold nanostars. The surface plasmon modes supported by the gold nanostars can change the local electromagnetic fields in the vicinity of the quantum emitters, leading to their enhanced emission intensities. Moreover, by correlating the emission energies and intensities of the quantum emitters, we are able to associate them with two types of strain fields, and derive the existence of a low-lying dark state in their electronic structures. Our findings are highly relevant for the development and understanding of single-photon emitters in transition metal dichalcogenide materials.
               
Click one of the above tabs to view related content.